Galaxy Merger Morphologies and Time-Scales from Simulations of Equal-Mass Gas-Rich Disc Mergers
نویسندگان
چکیده
A key obstacle to understanding the galaxy merger rate and its role in galaxy evolution is the difficulty in constraining the merger properties and time-scales from instantaneous snapshots of the real universe. The most common way to identify galaxy mergers is by morphology, yet current theoretical calculations of the time-scales for galaxy disturbances are quite crude. We present a morphological analysis of a large suite of GADGET N-Body/hydro-dynamical equal-mass gas-rich disc galaxy mergers which have been processed through the Monte-Carlo radiative transfer code SUNRISE. With the resulting images, we examine the dependence of quantitative morphology (G, M20, C, A) in the SDSS g-band on merger stage, dust, viewing angle, orbital parameters, gas properties, supernova feedback, and total mass. We find that mergers appear most disturbed in G − M20 and asymmetry at the first pass and at the final coalescence of their nuclei, but can have normal quantitative morphologies at other merger stages. The merger observability time-scales depend on the method used to identify the merger as well as the gas fraction, pericentric distance, and relative orientation of the merging system. Enhanced star formation peaks after and lasts significantly longer than strong morphological disturbances. Despite their massive bulges, the majority of merger remnants appear disc-like and dusty in g-band light because of the presence of a low-mass star-forming disc. Equal-mass mergers of low-mass disc galaxies produce nucleated dwarf galaxies.
منابع مشابه
Stellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کاملEqual- and Unequal-mass Mergers of Disk and Elliptical Galaxies with Black Holes: the Mbh − Σ and Mbh −m∗ Relations
We present binary galaxy merger simulations with varying mass ratios and different progenitor morphologies. The simulations include mergers of gas-rich disks (Sp-Sp), of early-type galaxies and disks (E-Sp, mixed mergers), and mergers of early-type galaxies (E-E, dry mergers). We follow the dynamics of gas, stars and dark matter, and include radiative cooling, star formation and black hole (BH)...
متن کاملEqual- and Unequal-mass Mergers of Disk and Elliptical Galaxies with Black Holes
We present binary galaxy merger simulations with varying mass ratios and different progenitor morphologies. The simulations include mergers of gas-rich disks (Sp-Sp), of early-type galaxies and disks (E-Sp, mixed mergers), and mergers of early-type galaxies (E-E, dry mergers). We follow the dynamics of gas, stars and dark matter, and include radiative cooling, star formation and black hole (BH)...
متن کاملTermination of star formation by BH feedback in equal- and unequal- mass mergers of disk and elliptical galaxies
We present binary galaxy merger simulations of gas-rich disks (Sp-Sp), of early-type galaxies and disks (E-Sp, mixed mergers), and mergers of early-type galaxies (E-E, dry mergers) with varying mass ratios and different progenitor morphologies. The simulations include radiative cooling, star formation and black hole (BH) accretion and the associated feedback processes. We find for Sp-Sp mergers...
متن کاملOn the inspiral of massive black holes in gas-rich galaxy mergers
We present a study on the dynamics of massive black holes (BHs) in galaxy mergers, obtained from a series of high-resolution N-Body/SPH simulations. We show that the presence of a gaseous component is essential for the rapid formation of an eccentric (Keplerian) BH binary. The binary resides at the center of a massive (∼ 10M⊙) turbulent nuclear disc resulting from the collision of the two gaseo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008